Signature Recognition


CHAPTER TWO

SIGNATURE RECOGNITION
2.1 Overview

This chapter presents an overview of signature recognition. The analysis of image, the main elements of image analysis, and steps of image processing are explained.  Color image representation and processing, image segmentation problems have been described.
2.2 Introduction
Image analysis is a process of discovering, identifying, and understanding patterns that are relevant to the performance of an image-based task. One of the principal goals of image analysis by computer is to endow a machine with the capability to approximate, in so me sense, a similar capability in human beings. For example, in a system for automatically reading images of typed documents, the patterns of interest are alphanumeric characters, and the goal is to achieve character recognition accuracy that is as close as possible to the superb capability exhibited by human beings for performing such tasks.

Thus an automated image analysis system should be capable of exhibiting various degrees of intelligence. The concept of intelligence is somewhat vague, particularly with reference to a machine. However, conceptualizing various types of behavior generally associated with intelligence is not difficult. Several characteristics come immediately to mind: (1) the ability to extract pertinent information from a background of irrelevant details; (2) the capability to learn from examples and to generalize this knowledge so that it will apply in new and different circumstances; and (3) the ability to make inferences from in​complete information.

Image analysis systems with these characteristics can be designed and im​plemented for limited operational environments. However, we do not yet know how to endow these systems with a level of performance that comes even close to emulating human capabilities in performing general image analysis functions. Research in biological and computational systems continually is uncovering new and promising theories to explain human visual cognition. However, the state of the art in computerized image analysis for the most part is based on heuristic formulations tailored to solve specific problems. For example, some machines are capable of reading printed, properly formatted documents at speeds that are orders of magnitude faster than the speed that the most skilled human reader could achieve. However, systems of this type are highly spe​cialized and thus have little or no extendability. 
2.3 Elements of Image Analysis
Dividing the spectrum of pattern techniques in image analysis into three basic areas is conceptually useful. These areas are (1) low-level processing, (2) intermediate ​level processing, and (3) high-level processing. Although these subdivisions have no definitive boundaries, they do provide a useful framework for cate​gorizing the various processes that are inherent components of an autonomous image analysis system. Figure 2.1 illustrates these concepts, with the overlap​ping dashed lines indicating that clear-cut boundaries between processes do not exist For example, thresholding may be viewed as an enhancement (prepro​cessing) or a segmentation tool, depending on the application.

Low-level processing deals with functions that may be viewed as automatic reactions, requiring no intelligence on the part of the image analysis system. 
We treat image acquisition and preprocessing as low-level func​tions. This classification encompasses activities from the image formation pro​cess itself to compensations, such as noise reduction or image deblurring. Low-​level functions may be compared to the sensing and adaptation processes that a person goes through when trying to find a seat immediately after entering a dark theater from bright sunlight. The (intelligent) process of finding an un​occupied seat cannot begin until a suitable image is available. The process followed by the brain in adapting the visual system to produce such an image is an automatic, unconscious reaction.

lntermediate-Ievel processing deals with the task of extracting and charac​terizing components (say, regions) in an image resulting from a low-level pro​cess. As figure 2.1 indicates, intermediate-level processes encompass segmen​tation and description, using techniques. Some capabilities for intelligent behavior have to be built into flexible segmentation procedures. For example, bridging small gaps in a segmented boundary involves more sophisticated elements of problem solving than mere low-level automatic reactions.
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Figure 2.1 Elements of Image Analysis

Finally, high-level processing involves recognition and interpretation, the principal subjects of this chapter. These two processes have a stronger resem​blance to what generally is meant by the term intelligent cognition. The majority of techniques used for low- and intermediate-level processing encompass a reasonably well-defined set of theoretic formulations. However, as we venture into recognition, and especially into interpretation, our knowledge and under​standing of fundamental principles becomes far less precise and much more speculative. 
This relative lack of understanding ultimately results in a formu​lation of constraints and idealizations intended to reduce task complexity to a manageable level. The end product is a system with highly specialized operational capabilities. The material in the following sections deals with: (1) decision-theoretic methods for recognition, (2) structural methods for recognition, and (3) meth​ods for image interpretation. Decision-theoretic recognition is based on representing patterns in vector form and then seeking approaches for grouping and assigning pattern vectors into different pattern classes. 
The prin​cipal approaches to decision-theoretic recognition are minimum distance clas​sifiers, correlators, Bayes classifiers, and neural networks. 
In structural rec​ognition, patterns are represented in symbolic form (such as strings and trees), and recognition methods are based on symbol matching or on models that treat symbol patterns as sentences from an artificial language. Image inter​pretation deals with assigning meaning to an ensemble of rec​ognized image elements. The predominant concept underlying image interpre​tation methodologies is the effective organization and use of knowledge about a problem domain. Current techniques for image interpretation are based on predicate logic, semantic networks, and production (in particular, expert) systems.
2.4 Patterns and Pattern Classes
As stated in Section 2.2, the ability to perform pattern recognition at some level is fundamental to image analysis. Here, a pattern is a quantitative or structural description of an object or some other entity of interest in an image. In general, a pattern is formed by one or more descriptors. In other words, a pattern is an arrangement of descrip​tors. (The name features is of ten used in the pattern recognition literature to denote descriptors.) A pattern class is a family of patterns that share some common properties. Pattern classes are denoted ω1, ω2… ωM where M is the number of classes. Pattern recognition by machine involves techniques for assigning patterns to the irrespective c1asses-automatically and with as little human intervention as possible.
2.5 Error Matrices
Two of the error metrics used to compare the various image compression techniques are the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR). The MSE is the cumulative squared error between the compressed and the original image, whereas PSNR is a measure of the peak error. The mathematical formulae for the two are  


PSNR =   20 * log10 (255 / sqrt(MSE))  

where I(x,y) is the original image, I'(x,y) is the approximated version (which is actually the decompressed image) and M,N are the dimensions of the images. A lower value for MSE means lesser error, and as seen from the inverse relation between the MSE and PSNR, this translates to a high value of PSNR. Logically, a higher value of PSNR is good because it means that the ratio of Signal to Noise is higher. Here, the 'signal' is the original image, and the ‘noise’ is the error in reconstruction. So, if you find a compression scheme having a lower MSE (and a high PSNR), you can recognize that it is a better one.  

2.6 The Inverse DWT of an Image

Just as a forward transform used to separate the image data into various classes of importance, a reverse transform is used to reassemble the various classes of data into a reconstructed image. A pair of high pass and low pass filters is used here also. This filter pair is called the Synthesis Filter pair. The filtering procedure is just the opposite - we start from the topmost level, apply the filters column-wise first and then row-wise, and proceed to the next level, till we reach the first level. 

2.6.1 Bit Allocation

The first step in compressing an image is to segregate the image data into different classes. Depending on the importance of the data it contains, each class is allocated a portion of the total bit budget, such that the compressed image has the minimum possible distortion. This procedure is called Bit Allocation. 

The Rate-Distortion theory is often used for solving the problem of allocating bits to a set of classes, or for bit-rate control in general. The theory aims at reducing the distortion for a given target bit-rate, by optimally allocating bits to the various classes of data. One approach to solve the problem of Optimal Bit Allocation using the Rate-Distortion theory, which is explained below. 

1. Initially, all classes are allocated a predefined maximum number of bits. 

2. For each class, one bit is reduced from its quota of allocated bits, and the distortion due to the reduction of that 1 bit is calculated. 

3. Of all the classes, the class with minimum distortion for a reduction of 1 bit is noted, and 1 bit is reduced from its quota of bits. 

4. The total distortion for all classes D is calculated. 

5. The total rate for all the classes is calculated as R = p(i) * B(i), where p is the probability and B is the bit allocation for each class. 

6. Compare the target rate and distortion specifications with the values obtained above. If not optimal, go to step 2. 

In the approach explained above, we keep on reducing one bit at a time till we achieve optimality either in distortion or target rate, or both. An alternate approach which is also mentioned to initially start with zero bits allocated for all classes, and to find the class which is most 'benefited' by getting an additional bit. 
The ‘benefit’ of a class is defined as the decrease in distortion for that class. 
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Figure 2.2 ‘Benefit’ of a Bit is the Decrease in Distortion Due to receiving that Bit.

As shown above, the benefit of a bit is a decreasing function of the number of bits allocated previously to the same class. Both approaches mentioned above can be used to the Bit Allocation problem. 

2.6.2 Quantization

Quantization refers to the process of approximating the continuous set of values in the image data with a finite (preferably small) set of values. The input to a quantizer is the original data, and the output is always one among a finite number of levels. The quantizer is a function whose set of output values are discrete, and usually finite. Obviously, this is a process of approximation, and a good quantizer is one which represents the original signal with minimum loss or distortion. 

There are two types of quantization - Scalar Quantization and Vector Quantization. In scalar quantization, each input symbol is treated separately in producing the output, while in vector quantization the input symbols are clubbed together in groups called vectors, and processed to give the output. 
This clubbing of data and treating them as a single unit increases the optimality of the vector quantizer, but at the cost of increased computational complexity. Here, we’ll take a look at scalar quantization. 

A quantizer can be specified by its input partitions and output levels (also called reproduction points). If the input range is divided into levels of equal spacing, then the quantizer is termed as a Uniform Quantizer, and if not, it is termed as a Non-Uniform Quantizer. A uniform quantizer can be easily specified by its lower bound and the step size. Also, implementing a uniform quantizer is easier than a non-uniform quantizer. Take a look at the uniform quantizer shown below. If the input falls between n*r and (n+1)*r, the quantizer outputs the symbol n. 
[image: image13.wmf]ZR

ZG

ZB

éù

êú

êú

êú

ëû


Figure 2.3 Uniform Quantizer

Just the same way a quantizer partitions its input and outputs discrete levels, a Dequantizer is one which receives the output levels of a quantizer and converts them into normal data, by translating each level into a 'reproduction point' in the actual range of data. It can be seen from literature, that the optimum quantizer (encoder) and optimum dequantizer (decoder) must satisfy the following conditions. 

· Given the output levels or partitions of the encoder, the best decoder is one that puts the reproduction points x' on the centers of mass of the partitions. This is known as centroid condition. 

· Given the reproduction points of the decoder, the best encoder is one that puts the partition boundaries exactly in the middle of the reproduction points, i.e. each x is translated to its nearest reproduction point. This is known as nearest neighbour condition. 

The quantization error (x - x') is used as a measure of the optimality of the quantizer and dequantizer.
2.7 Object Recognition
Object recognition consists of locating the positions and possibly orientations and scales of instances of objects in an image. The purpose may also be to assign a class label to a detected object. Our survey of the literature on object recognition using ANNs indicates that in most applications, ANNs have been trained to locate individual objects based direction pixel data. Another less frequently used approach is to map the contents of a window onto a feature space that is provided as input to a neural classifier.
2.7.1 Signature Recognition

Signatures are a special case of handwriting subject to intra-personal variation and inter-personal differences. This variability makes it necessary to analyze signatures as complete images and not as collection of letters and words.
 Human signatures provide secure means for authentication and authorization in legal and banking documents; therefore, the need of research in efficient automatic solutions for the involved signature recognition and verification problems has increased. In the signature recognition or identification problem, a given signature is searched in the database to establish the signer’s identity. Signature verification problem is concerned to determine if a particular signature is authentic or a forgery [5, 10]. 
Techniques for solving both the recognition and verification problems can be classified as on-line and off-line [1]. In the first ones, data are obtained using an electronic tablet and other devices and in the second ones, images of signatures written on a paper are scanned and dynamic information is not available

Many approaches for the automatic off-line verification problem have been reported in the literature [8]. 
In general, the proposed techniques use either a type of features (global, local, statistical, geometric, etc) or a combination of different types of features, extracted from the signature images. In particular, Fang et al [4] use a stroke-based method that approximates the strokes in the signature skeleton by fitting a set of short lines with similar lengths. However, the signature recognition problem has received little attention despite the fact that it is of interest in previous work is [9] which uses a set of topologic features to characterize each signature.
2.8 Color Image Representations

In this section we discuss the image recognition Toolbox handles color images either as indexed images or RGB (red, green and blue) images.

2.8.1 RGB Images
An RGB color image is an M x N x 3 array of color pixels, where each color pixel is at triplet corresponding to the red, green, and blue components of an RGB image at a specific spatial location (see figure 2.4). An RGB image may be viewed as a “stack” of three gray-scale images that, when fed into the red, green, and blue inputs of the color monitor, produce a color image are referred to as the red, green, and blue component images. 

The data class of the component images determines their range of values. If an RGB image is of class double, the range of values is [0, 1]. Similarly, the range of values is [0,255] or [0, 65535] for RGB images of class. The number of bits used to represent the pixel values of the component images determines the bit depth of an RGB image. For example, if each component image is an 8-bit image, the corresponding RGB image is said to be 24 bits deep. 

Generally, the number of bits in all component images is the same. In this case, the number of possible colors in an RGB image is (2b) 3, where b is the number of bites in each component image. For the 8-bit case, the number is 16,777,216 colors.

Figure 2.4 Schematic showing how pixels of an RGB color image are formed from the corresponding pixels of the three component images.
2.9 Image Segmentation
Segmentation subdivides an image into its constituent regions or objects. The level to which the subdivision is carried depends on the problem being solved. That is segmentation should stop when the objects of interest in an application have been isolated. For example, in the automated inspection of electronic assemblies, interest lies in analyzing images of the product with the objective of determining the presence or absence of specific anomalies, such as missing components or broken connection oaths. There is no point in carrying segmentation past the level of detail required to identify those elements. 

Segmentation of nontrivial images is one of the most difficult tasks in image recognition.

Segmentation accuracy determines the eventual success or failure of computerized analysis procedures. For this reason, considerable care should be taken to improve the probability of rugged segmentation. In some situations, such as industrial inspection applications, at least some measure of control over the environment is possible at time. In others, as in remote sensing, user control over image acquisition is limited principally to the choice of imaging sensors. Segmentation algorithms for monochrome images generally are based on one of two basic properties of image intensity values: discontinuity and similarity. In the first category, the approach is to partition an image based on abrupt changes in intensity, such as edges in an image. The principal approaches in the second category are based on partitioning and image into regions that are similar according to a set of predefined criteria. In this section we discuss line detection and thresholding.

2.9.1 Line detection 
In this section we discuss techniques for line detection in digital images most way to common way to look for discontinuity is to run a mask through the image. For a mask 3 x3 mask this procedure involves computing the sum of products of the coefficients with the intensity levels contained in the region encompassed by the mask. That is, the response, R, of the mask at any point in the image is given by 

R = w1z1 + w2z2+ … + w9z9 = 
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Where zi is the intensity of the pixel associated with mask coefficient wi. As before, the response of the mask is defined with respect to its center.

Consider the masks in figure 2.5. If the first mask were moved around an image, it would respond more strongly to lines (one pixel thick) oriented horizontally. With a constant background, the maximum response would result when the line passed through the middle row of the mask. Similarly, the second mask in 2.5 responds best to lines oriented at
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; the third mask to vertical lines; and fourth mask to lines in the 
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 direction. Note that the peferred direction of each mask is weighted with a larger coefficient than other possible directions. The coefficients of each mask sum to zero, indicating a zero response from the mask in areas of constant intensity.
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Figure 2.5 line detector masks.

Let R1, R2, R3, and R4 denote the responses of the masks in fig 2.5, from left to right, where the R’s are given. Suppose that the four masks are run individually through an image. If, at a certain point in the image 
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I, that point is said to be more likely associated with a line in the direction of mask i. For example, if at a point in the image, 
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 for j = 2, 3, 4 that particular point is said to be more likely associated with a horizontal line alternatively, we may be interested in detected with that direction and threshold its output, as in the equation in the previous section. 

2.10 Summary
This chapter presented an introduction to the signature recognition, elements of image analysis, patterns and pattern classes, classifying of image data, The DWT of an image Bit allocation, Quantization, and Signature Recognition have been described. 
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